Algebra: Expanding brackets
Expanding double brackets
We have seen how we can expand single brackets. We can also expand double brackets. We can do so using the banana method, as they call it in Dutch.
The banana method
(\blue a \green{- 3}) \cdot (\purple b + \orange 2) &=&
\blue a \cdot \purple b + \blue a \cdot \orange 2 \\&& \green{ -3} \cdot \purple b \green{-3} \cdot \orange 2 \\
\end{array}#
Hover over the equations to see the animation.
Multiply each term in the first pair of brackets by each term in the second pair of brackets.
\[(\blue a + \green b) \cdot (\purple c + \orange d) = \blue a \cdot \purple c + \blue a \cdot \orange d + \green b \cdot \purple c + \green b \cdot \orange d\]
Example
#\begin{array}{rcl}(\blue a \green{- 3}) \cdot (\purple b + \orange 2) &=&
\blue a \cdot \purple b + \blue a \cdot \orange 2 \\&& \green{ -3} \cdot \purple b \green{-3} \cdot \orange 2 \\
\end{array}#
|
Example |
\[(\blue a + \green b) \cdot (\purple c + \orange d) = \blue a \cdot \purple c + \blue a \cdot \orange d + \green b \cdot \purple c + \green b \cdot \orange d\]
In this video, we demonstrate the method with three examples.
The voice in the video is AI-generated and not a human voice.
In the same way, we can also work with more complicated products.
#c^2+c-6#
#\begin{array}{rcl}
\left(c+3\right) \cdot \left(c -2 \right) &=& c \cdot c + c \cdot -2 + 3 \cdot c + 3 \cdot -2 \\ &&\phantom{xxx}\blue{\text{rule \(\left(a+b\right) \cdot \left(c+d\right) = a \cdot c + a \cdot d + b \cdot c + b \cdot d\) }}\\
&=& c^2 -2\cdot c + 3\cdot c -6
\\&&\phantom{xxx}\blue{\text{multiplied }}\\
&=& c^2+c-6
\\&&\phantom{xxx}\blue{\text{simplified}}\\
\end{array}#
#\begin{array}{rcl}
\left(c+3\right) \cdot \left(c -2 \right) &=& c \cdot c + c \cdot -2 + 3 \cdot c + 3 \cdot -2 \\ &&\phantom{xxx}\blue{\text{rule \(\left(a+b\right) \cdot \left(c+d\right) = a \cdot c + a \cdot d + b \cdot c + b \cdot d\) }}\\
&=& c^2 -2\cdot c + 3\cdot c -6
\\&&\phantom{xxx}\blue{\text{multiplied }}\\
&=& c^2+c-6
\\&&\phantom{xxx}\blue{\text{simplified}}\\
\end{array}#
Unlock full access
Teacher access
Request a demo account. We will help you get started with our digital learning environment.
Student access
Is your university not a partner?
Get access to our courses via Pass Your Math independent of your university. See pricing and more.
Or visit omptest.org if jou are taking an OMPT exam.
Or visit omptest.org if jou are taking an OMPT exam.