Numbers: Fractions
Negative fractions
Negative fractions
The rules for fractions containing negative numbers are comparable to the rules for dividing negative numbers:
\[\begin{array}{rclrcl}
\dfrac{\green{\text{positive}}}{\green{\text{positive}}} &=&\green{\text{positive}}\\[5pt]
\dfrac{\green{\text{positive}}}{\blue{\text{negative}}} &=&\blue{\text{negative}}\\[5pt]
\dfrac{\blue{\text{negative}}}{\green{\text{positive}}} &=& \blue{ \text{negative}} \\[5pt]
\dfrac{\blue{\text{negative}}}{\blue{\text{negative}}} &=&\green{\text{positive}} \\
\end{array}\]
Examples
\[\begin{array}{rcl|rcl}\require{color}
\\\phantom{xxx}\\
\dfrac{\green2}{\green3} &=& \green{\dfrac{2}{3}} \\[10pt]
\dfrac{\green2}{\blue{-3}} &=&\blue{-\dfrac{2}{3}}\\[10pt]
\dfrac{\blue{-2}}{\green3} &=&\blue{-\dfrac{2}{3}}\\[10pt]
\dfrac{\blue{-2}}{\blue{-3}} &=& \green{\dfrac{2}{3}} \\
\end{array}\]
The fraction #\dfrac{-1}{-2}# is positive because two negative numbers divided by each other give a positive number. The other fractions should, therefore, also be positive. That means the number of minus signs in each fraction should be even. This gives:
\[\dfrac{-1}{-2}=\dfrac{1}{2}=-\dfrac{1}{-2}\]
Or visit omptest.org if jou are taking an OMPT exam.